Cart (Loading....) | Create Account
Close category search window
 

Upper bounds for constant-weight codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Agrell, E. ; Dept. of Electr. & Comput. Eng., Chalmers Lindholmen Univ. Coll., Goteborg, Sweden ; Vardy, A. ; Zeger, K.

Let A(n,d,w) denote the maximum possible number of codewords in an (n,d,w) constant-weight binary code. We improve upon the best known upper bounds on A(n,d,w) in numerous instances for n⩽24 and d⩽12, which is the parameter range of existing tables. Most improvements occur for d=8, 10, where we reduce the upper bounds in more than half of the unresolved cases. We also extend the existing tables up to n⩽28 and d⩽14. To obtain these results, we develop new techniques and introduce new classes of codes. We derive a number of general bounds on A(n,d,w) by means of mapping constant-weight codes into Euclidean space. This approach produces, among other results, a bound on A(n,d,w) that is tighter than the Johnson bound. A similar improvement over the best known bounds for doubly-constant-weight codes, studied by Johnson and Levenshtein, is obtained in the same way. Furthermore, we introduce the concept of doubly-bounded-weight codes, which may be thought of as a generalization of the doubly-constant-weight codes. Subsequently, a class of Euclidean-space codes, called zonal codes, is introduced, and a bound on the size of such codes is established. This is used to derive bounds for doubly-bounded-weight codes, which are in turn used to derive bounds on A(n,d,w). We also develop a universal method to establish constraints that augment the Delsarte inequalities for constant-weight codes, used in the linear programming bound. In addition, we present a detailed survey of known upper bounds for constant-weight codes, and sharpen these bounds in several cases. All these bounds, along with all known dependencies among them, are then combined in a coherent framework that is amenable to analysis by computer. This improves the bounds on A(n,d,w) even further for a large number of instances of n, d, and w

Published in:

Information Theory, IEEE Transactions on  (Volume:46 ,  Issue: 7 )

Date of Publication:

Nov 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.