By Topic

Probability theory of electron-molecule, ion-molecule, molecule-molecule, and Coulomb collisions for particle modeling of materials processing plasmas and cases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Nanbu, Kenichi ; Inst. of Fluid Sci., Tohoku Univ., Sendai, Japan

The use of high plasma density and low gas density, a recent trend in plasma-assisted materials processing, requires a particle simulation method for plasmas and gas flows. The kinetic theory basis of the particle simulation method is first described. Based on this theoretical viewpoint, state-of-the-art probabilistic treatments of collisions are described for electron-molecule, ion-molecule, molecule-molecule, and Coulomb collisions

Published in:

Plasma Science, IEEE Transactions on  (Volume:28 ,  Issue: 3 )