By Topic

Studies of relativistic backward-wave oscillator operation in the cross-excitation regime

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hegeler, F. ; Dept. of Electr. & Comput. Eng., New Mexico Univ., Albuquerque, NM, USA ; Partridge, M.D. ; Schamiloglu, E. ; Abdallah, C.T.

We first reported the operation of a relativistic backward-wave oscillator (BWO) in the so-called cross-excitation regime in 1998. This instability, whose general properties were predicted earlier through numerical studies, resulted from the use of a particularly shallow rippled-wall waveguide [slow wave structure (SWS)] that was installed in an experiment to diagnose pulse shortening in a long-pulse electron beam-driven high-power microwave (HPM) source. This SWS was necessary to accommodate laser interferometry measurements along the SWS during the course of microwave generation. Since those early experiments, we have studied this regime in greater detail using two different SWS lengths. We have invoked time-frequency analysis, the smoothed-pseudo Wigner-Ville distribution in particular, to interpret the heterodyned signals of the radiated power measurements. These recent results are consistent with earlier theoretical predictions for the onset and voltage scaling for this instability. This paper presents data for a relativistic BWO operating in the single-frequency regime for two axial modes, operating in the cross-excitation regime, and discusses the interpretation of the data, as well as the methodology used for its analysis. Although operation in the cross-excitation regime is typically avoided due to its poorer efficiency, it may prove useful for future HPM effects studies

Published in:

Plasma Science, IEEE Transactions on  (Volume:28 ,  Issue: 3 )