By Topic

Experimental studies of long-lifetime cold cathodes for high-power microwave oscillators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Gunin, A.V. ; Inst. of High-Current Electron., Acad. of Sci., Tomsk, Russia ; Landl, V.F. ; Korovin, S.D. ; Mesyats, G.A.
more authors

Operation of explosive-emission cold cathodes made from various materials was studied at a large number of pulses at current densities of ~1.04 A/cm2. The cathode voltage and the beam current were ~500 kV and 5 kA, respectively, with a pulsewidth of ~20 ns. At a small number of pulses (⩽103), cathodes of like geometry (even made from different materials) demonstrated similar emission properties. For most of the materials tested, with a large number of pulses (⩾103), the current risetime increased to the fullwidth of the voltage pulse and the maximum current of the vacuum diode decreased. When using a graphite cathode, the maximum current remained invariant until 108 pulses. Mass losses were measured for a series of cathode materials. The results obtained offered the possibility to realize long-lived operation of an X-band relativistic backward-wave oscillator with an almost invariant output power of 350-400 MW during 108 pulses at a pulse repetition rate of 100-150 p.p.s

Published in:

Plasma Science, IEEE Transactions on  (Volume:28 ,  Issue: 3 )