By Topic

Pulsewidth limitation in the relativistic backward wave oscillator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Korovin, S.D. ; Inst. of High-Current Electron., Acad. of Sci., Tomsk, Russia ; Mesyats, G.A. ; Pegel, I.V. ; Polevin, S.D.
more authors

Spontaneous pulse shortening occurring in a relativistic backward wave oscillator (BWO) at gigawatt power levels is studied in experiment and theory. It is experimentally demonstrated that this phenomenon is accompanied by formation of an explosive-emission plasma at the surface of the corrugated slow-wave structure (SWS). Termination of microwave emission is explained by the increase of the BWO starting current from the absorption of the operating electromagnetic wave by electrons emitted from the plasma, whereas the intensity of the absorption radically increases offing to the presence of positive ions emitted from the plasma. Application of oil-free vacuum and electrochemical polishing of the SWS surface in an X-band BWO allowed generation of 3-GW, 26-ns microwave pulses with an energy of ~80 J, thereby demonstrating pulse lengthening by a factor of four

Published in:

Plasma Science, IEEE Transactions on  (Volume:28 ,  Issue: 3 )