Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Object localization and border detection criteria design in edge-based image segmentation: automated learning from examples

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Brejl, M. ; Dept. of Electr. & Comput. Eng., Iowa Univ., Iowa City, IA, USA ; Sonka, M.

This paper provides methodology for fully automated model-based image segmentation. All information necessary to perform image segmentation is automatically derived from a training set that is presented in a form of segmentation examples. The training set is used to construct two models representing the objects-shape model and border appearance model. A two-step approach to image segmentation is reported. In the first step, an approximate location of the object of interest is determined. In the second step, accurate border segmentation is performed. The shape-variant Hough transform method was developed that provides robust object localization automatically. It finds objects of arbitrary shape, rotation, or scaling and can handle object variability. The border appearance model was developed to automatically design cost functions that can be used in the segmentation criteria of edge-based segmentation methods. The authors' method was tested in five different segmentation tasks that included 489 objects to be segmented. The final segmentation was compared to manually defined borders with good results [rms errors in pixels: 1.2 (cerebellum), 1.1 (corpus callosum), 1.5 (vertebrae), 1.4 (epicardial), and 1.6 (endocardial) borders]. Two major problems of the state-of-the-art edge-based image segmentation algorithms were addressed: strong dependency on a close-to-target initialization, and necessity for manual redesign of segmentation criteria whenever new segmentation problem is encountered.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:19 ,  Issue: 10 )