By Topic

The computational complexity of N-K fitness functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. H. Wright ; Dept. of Comput. Sci., Montana Univ., Missoula, MT, USA ; R. K. Thompson ; Jian Zhang

N-K fitness landscapes have been used widely as examples and test functions in the field of evolutionary computation. We investigate the computational complexity of the problem of optimizing the N-K fitness functions and related fitness functions. We give an algorithm to optimize adjacent-model N-K fitness functions, which is polynomial in N. We show that the decision problem corresponding to optimizing random-model N-K fitness functions is NP-complete for K>1, and is polynomial for K=1. If the restriction that the ith component function depends on the ith bit is removed, then the problem is NP-complete, even for K=1. We also give a polynomial-time approximation algorithm for the arbitrary-model N-K optimization problem.

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:4 ,  Issue: 4 )