Cart (Loading....) | Create Account
Close category search window
 

A versatile method for analyzing paraxial optical propagation in dielectric structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Causa, F. ; Dept. of Electron. & Electr. Eng., Bath Univ., UK ; Sarma, J.

This paper presents a fast and accurate quasi-analytic model for studying optical field propagation in weakly guiding dielectric structures. The proposed efficient and versatile computational scheme is obtained by merging the Hermite-Gauss (HG) total field expansion with the numerical collocation method and is particularly suited for longitudinally nonuniform structures. By means of a quasilinearization scheme, the same procedure has also been successfully applied to the analysis of field propagation in Kerr-nonlinear media. The latter achievement gives an indication of the great potentialities offered by this straight forward method. Several examples are discussed in the paper and in all cases the results computed by the proposed method favorably compare with those from alternative methods.

Published in:

Lightwave Technology, Journal of  (Volume:18 ,  Issue: 10 )

Date of Publication:

Oct. 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.