By Topic

The good, bad and ugly: distributed detection of a known signal in dependent Gaussian noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Willett, P. ; Dept. of Electr. & Syst. Eng., Connecticut Univ., Storrs, CT, USA ; Swaszek, P.F. ; Blum, R.S.

Most results about quantized detection rely strongly on an assumption of independence among random variables. With this assumption removed, little is known. Thus, in this paper, Bayes-optimal binary quantization for the detection of a shift in mean in a pair of dependent Gaussian random variables is studied. This is arguably the simplest meaningful problem one could consider. If results and rules are to be found, they ought to make themselves plain in this problem. For certain problem parametrizations (meaning the signals and correlation coefficient), optimal quantization is achievable via a single threshold applied to each observation-the same as under independence. In other cases, one observation is best ignored or is quantized with two thresholds; neither behavior is seen under independence. Further, and again in distinction from the case of independence, it is seen that in certain situations, an XOR fusion rule is optimal, and in these cases, the implied decision rule is bizarre. The analysis is extended to the multivariate Gaussian problem.

Published in:

Signal Processing, IEEE Transactions on  (Volume:48 ,  Issue: 12 )