By Topic

Optimal adaptive precoding for frequency-selective Nagakami-m fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Scaglione, A. ; Dept. of Electr. & Comput. Eng., Minnesota Univ., Minneapolis, MN, USA ; Barbarossa, S. ; Giannakis, G.B.

DMT transmissions with optimal power and bit loading are suitable for wired-line applications but have high complexity when it comes to wireless time-varying environments. Adaptive modulation on the other hand, assumes that training sequences are available to provide an accurate estimate of the channel parameters, while the channel statistics allow one to evaluate the average performance. Random channel modeling is a powerful tool for assessing wireless systems performance, but can be also be instrumental in optimizing the modulation. We develop optimal loading strategies for frequency selective fading, assuming OFDM modulation and by modeling the channel impulse response as an FIR filter whose taps are Nagakami-m correlated fading processes. The design minimizes the BER for a given average transmit power. Channel statistics need to be updated at a very slow rate when compared to the exact channel status information (CSI), which reduces complexity of our adaptive OFDM scheme compared to a standard DMT approach. This also alleviates the need of training and allows us to incorporate partial channel knowledge in the design. Interestingly, our derivations identify the optimal solution for the limiting case where the channel transfer function is exactly known at both transmitter and receiver

Published in:

Vehicular Technology Conference, 2000. IEEE-VTS Fall VTC 2000. 52nd  (Volume:3 )

Date of Conference:

2000