By Topic

Recognizing sources of random strings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. S. Valiveti ; Sch. of Comput. Sci., Carleton Univ., Ottawa, Ont., Canada ; B. J. Oommen

The identification of a source given a sequence of random strings is discussed. Two modes of random string generation are analyzed. In the first mode, arbitrary strings are generated in which the individual symbols occur exactly once in each random string. The latter case corresponds to the situation in which the sources generate random permutations. In both cases, the best match to the distribution being used by each source can be obtained by maintaining an exponential number of statistics. This being infeasible, a simple parameterization of the distributions is proposed. For arbitrary strings, the simple unigram-based model (U-model) is proposed. For the case of permutations, a new model called the S-model is proposed, and it is used to analyze and/or approximate unknown distributions of permutations. The relevant estimation procedures, together with the applications to source recognition, are presented. The method presents a unique blend of syntactic and statistical pattern recognition

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:13 ,  Issue: 4 )