By Topic

Least-squares estimation of transformation parameters between two point patterns

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Umeyama, S. ; Inf. Sci. Div., Electrotech. Lab. Ibaraki, Japan

In many applications of computer vision, the following problem is encountered. Two point patterns (sets of points) {xi} and {xi}; i=1, 2, . . ., n are given in m-dimensional space, and the similarity transformation parameters (rotation, translation, and scaling) that give the least mean squared error between these point patterns are needed. Recently, K.S. Arun et al. (1987) and B.K.P. Horn et al. (1987) presented a solution of this problem. Their solution, however, sometimes fails to give a correct rotation matrix and gives a reflection instead when the data is severely corrupted. The proposed theorem is a strict solution of the problem, and it always gives the correct transformation parameters even when the data is corrupted

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:13 ,  Issue: 4 )