Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Anisotropic geometric diffusion in surface processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Clarenz, U. ; Inst. for Appl. Math., Bonn Univ., Germany ; Diewald, U. ; Rumpf, M.

A new multiscale method in surface processing is presented which combines the image processing methodology based on nonlinear diffusion equations and the theory of geometric evolution problems. Its aim is to smooth discretized surfaces while simultaneously enhancing geometric features such as edges and corners. This is obtained by an anisotropic curvature evolution, where time is the multiscale parameter. Here, the diffusion tensor depends on the shape operator of the evolving surface. A spatial finite element discretization on arbitrary unstructured triangular meshes and a semi-implicit finite difference discretization in time are the building blocks of the easy to code algorithm presented. The systems of linear equations in each timestep are solved by appropriate, preconditioned iterative solvers. Different applications underline the efficiency and flexibility of the presented type of surface processing tool.

Published in:

Visualization 2000. Proceedings

Date of Conference:

13-13 Oct. 2000