By Topic

Optimized feature extraction and the Bayes decision in feed-forward classifier networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lowe, D. ; R. Signals & Radar Establ., Great Malvern, UK ; Webb, A.R.

The problem of multiclass pattern classification using adaptive layered networks is addressed. A special class of networks, i.e., feed-forward networks with a linear final layer, that perform generalized linear discriminant analysis is discussed, This class is sufficiently generic to encompass the behavior of arbitrary feed-forward nonlinear networks. Training the network consists of a least-square approach which combines a generalized inverse computation to solve for the final layer weights, together with a nonlinear optimization scheme to solve for parameters of the nonlinearities. A general analytic form for the feature extraction criterion is derived, and it is interpreted for specific forms of target coding and error weighting. An important aspect of the approach is to exhibit how a priori information regarding nonuniform class membership, uneven distribution between train and test sets, and misclassification costs may be exploited in a regularized manner in the training phase of networks

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:13 ,  Issue: 4 )