Cart (Loading....) | Create Account
Close category search window
 

Modeling lidar returns from forest canopies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Guoqing Sun ; Dept. of Geogr., Maryland Univ., College Park, MD, USA ; Ranson, K.J.

Remote sensing techniques that utilize light detection and ranging (lidar) provide unique data on canopy geometry and subcanopy topography. This type of information will lead to improved understanding of important structures and processes of Earth's vegetation cover. To understand the relation between canopy structure and the lidar return waveform, a three-dimensional (3D) model was developed and implemented. Detailed field measurements and forest growth model simulations of forest stands were used to parameterize this vegetation lidar waveform model. In the model, the crown shape of trees determines the vertical distribution of plant material and the corresponding lidar waveforms. Preliminary comparisons of averaged waveforms from an airborne lidar and model simulations shows that the shape of the measured waveform was more similar to simulations using an ellipsoid or hemi-ellipsoid shape. The observed slower decay of the airborne lidar waveforms than the simulated waveforms may indicate the existence of the understories and may also suggest that higher order scattering from the upper canopy may contribute to the lidar signals. The lidar waveforms from stands simulated from a forest growth model show the dependence of the waveform on stand structure.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:38 ,  Issue: 6 )

Date of Publication:

Nov 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.