Cart (Loading....) | Create Account
Close category search window
 

Acceleration of on-surface MEI method by new metrons and FMM for 2-D conducting scattering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liu, Y.W. ; Dept. of Electron. Eng., City Univ. of Hong Kong, Kowloon, China ; Zhao, Y.W. ; Mei, K.K.

A new kind of metron is proposed and rapid integration provided by fast multipole methods (FMM) is implemented to dramatically reduce the CPU time of finding the MEI coefficients in the on-surface measured equation of invariance (OSMEI) method. The numerical example of the scattering of a large conducting elliptical cylinder shows that the computation speed is at least one order of magnitude faster than that of the original OSMEI, where sinusoidal metrons are used, and about 25% faster than that of the FMM, where the iteration method is used.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:48 ,  Issue: 8 )

Date of Publication:

Aug 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.