By Topic

A novel implementation of multilevel fast multipole algorithm for higher order Galerkin's method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Donepudi, K.C. ; Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL, USA ; Jiming Song ; Jian-Ming Jin ; Kang, G.
more authors

A new approach is proposed to reduce the memory requirements of the multilevel fast multipole algorithm (MLFMA) when applied to the higher order Galerkin's method. This approach represents higher order basis functions by a set of point sources such that a matrix-vector multiply is equivalent to calculating the fields at a number of points from given current sources at these points. The MLFMA is then applied to calculate the point-to-point interactions. This permits the use of more levels in MLFMA than applying MLFMA to basis-to-basis interactions directly and, thus, reduces the memory requirements significantly.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:48 ,  Issue: 8 )