By Topic

Scattering from a large body with cracks and cavities by the fast and accurate finite-element boundary-integral method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xin-Qing Sheng ; Dept. of Electron. Eng., Hong Kong Univ., China ; Yung, Edward Kai-Ning ; Chan, C.H. ; Jin, J.M.
more authors

A large body with cracks and cavities is a typical structure widely existing in realistic targets. In this paper, a newly developed fast and accurate finite-element boundary-integral (FA-FE-BI) method is applied to compute scattering by this kind of scatterer. A thorough analysis on this FA-FE-BI numerical technique is presented, clearly demonstrating that this technique has computational complexity O(N log N) and memory requirement O(N) (N is the total number of surface unknowns). An inward-looking approach is employed as a preconditioner to speed up the rate of convergence of iterative solvers for this structure. Under these techniques, a powerful code is developed for this kind of scatterer whose accuracy, efficiency, and capability is well confirmed by various numerical results.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:48 ,  Issue: 8 )