By Topic

TEASAR: tree-structure extraction algorithm for accurate and robust skeletons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sato, M. ; Dept. of Comput. Sci., State Univ. of New York, Stony Brook, NY, USA ; Bitter, I. ; Bender, M.A. ; Kaufman, A.E.
more authors

We introduce the TEASAR algorithm which is a treestructure extraction algorithm delivering skeletons that are accurate and robust. Volumetric skeletons are needed for accurate measurements of length along branching and winding structures. Skeletons are also required in automatic virtual navigation, such as traveling through human organs (e.g., the colon) to control movement and orientation of the virtual camera. We introduce a concise but general definition of a skeleton, and provide an algorithm that finds the skeleton accurately and rapidly. Our solution is fully automatic, which frees the user from having to engage in data preprocessing. We present the accurate skeletons computed on a number of test datasets. The algorithm is efficient as demonstrated by the running times on a single 194 MHz MIPS R10000 CPU which were all below five minutes

Published in:

Computer Graphics and Applications, 2000. Proceedings. The Eighth Pacific Conference on

Date of Conference:

2000