By Topic

Boundary integral equations from Hamilton's principle for surface acoustic waves under periodic metal gratings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
H. Abe ; TDK Corp., Chiba, Japan ; T. Sato

The procedure describes the derivation of boundary integral equations for surface acoustic waves propagating under periodic metal strip gratings with piezoelectric films. It takes into account the electrical and mechanical perturbations, including the effects of mass loading caused by the gratings with an arbitrary shape. First, an integral equation is derived with line integrals on the boundaries within one period. This derivation is based on Hamilton's principle and uses Lagrange's method of multipliers to alleviate the continuous conditions of the displacement and the electric potential on the boundaries. Second, boundary integral equations corresponding to each substrate, piezoelectric film, metal strip, and free space region are obtained from the integral equation using the Rayleigh-Ritz method for admissible functions. With this procedure, it is not necessary to make any assumptions for separation of the boundary conditions between two neighboring regions. Consequently, we clarify the theoretical basis for the analytical procedure using boundary integral equations for longitudinal LSAW modes.

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:47 ,  Issue: 6 )