Cart (Loading....) | Create Account
Close category search window

Mechanisms and hierarchical topology for fast handover in wireless IP networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Stephane, A. ; Centre for Telecommun. Res., King''s Coll., London, UK ; Mihailovic, A. ; Aghvami, A.H.

We propose a mechanism to perform fast handover in IP-based wireless networks for real-time applications such as Internet telephony and videoconferencing. Our proposal is designed to reestablish the communication session traffic flow quickly and to minimize the service disruption delay that occurs during mobile IP handover. In this scheme, we propose two different mechanisms to handle micromobility and inter-subdomain mobility, respectively. Micromobility handover handles movements within the same subdomain. Inter-subdomain handover supports handovers between two adjacent subdomains. The reason for having several subdomains is to deploy the network over a wider area to keep the mobile user in the same network for as long as possible. The novelty of the scheme is to retransmit the buffered packets during micromobility handover and to use multicasting to reestablish traffic flow during inter-subdomain movement. The entire scheme is performed within a hierarchical topology based on next-generation IP networks. We analyze both micromobility and inter-subdomain mobility handovers, and display simulation results for both voice and video over IP for micromobility handover.

Published in:

Communications Magazine, IEEE  (Volume:38 ,  Issue: 11 )

Date of Publication:

Nov 2000

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.