By Topic

Learning parametric specular reflectance model by radial basis function network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Siu-Yeung Cho ; Dept. of Electron. Eng., City Univ. of Hong Kong, China ; Chow, T.W.S.

For the shape from shading problem, it is known that most real images usually contain specular components and are affected by unknown reflectivity. In the paper, these limitations are addressed and a neural-based specular reflectance model is proposed. The idea of this method is to optimize a proper specular model by learning the parameters of a radial basis function network and to recover the object shape by the variational approach with this resulting model. The obtained results are very encouraging and the performance is demonstrated by using the synthetic and real images in the case of different specular effects and noisy environments.

Published in:

Neural Networks, IEEE Transactions on  (Volume:11 ,  Issue: 6 )