By Topic

Elementary function generators for neural-network emulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. Vassiliadis ; Dept. of Electr. Eng., Delft Univ. of Technol., Netherlands ; Ming Zhang ; J. G. Delgado-Frias

Piecewise first- and second-order approximations are employed to design commonly used elementary function generators for neural-network emulators. Three novel schemes are proposed for the first-order approximations. The first scheme requires one multiplication, one addition, and a 28-byte lookup table. The second scheme requires one addition, a 14-byte lookup table, and no multiplication. The third scheme needs a 16-byte lookup table, no multiplication, and no addition. A second-order approximation approach provides better function precision; it requires more hardware and involves the computation of one multiplication and two additions and access to a 28-byte lookup table. We consider bit serial implementations of the schemes to reduce the hardware cost. The maximum delay for the four schemes ranges from 24- to 32-bit serial machine cycles; the second-order approximation approach has the largest delay. The proposed approach can be applied to compute other elementary function with proper considerations.

Published in:

IEEE Transactions on Neural Networks  (Volume:11 ,  Issue: 6 )