By Topic

Stable neural controller design for unknown nonlinear systems using backstepping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Youping Zhang ; Numerical Technol. Inc., San Jose, CA, USA ; Pei-Yaun Peng ; Zhong-Ping Jiang

We propose, from an adaptive control perspective, a neural controller for a class of unknown, minimum phase, feedback linearizable nonlinear system with known relative degree. The control scheme is based on the backstepping design technique in conjunction with a linearly parametrized neural-network structure. The resulting controller, however, moves the complex mechanics involved in a typical backstepping design from off-line to online. With appropriate choice of the network size and neural basis functions, the same controller can be trained online to control different nonlinear plants with the same relative degree, with semi-global stability as shown by the simple Lyapunov analysis. Meanwhile, the controller also preserves some of the performance properties of the standard backstepping controllers. Simulation results are shown to demonstrate these properties and to compare the neural controller with a standard backstepping controller.

Published in:

Neural Networks, IEEE Transactions on  (Volume:11 ,  Issue: 6 )