By Topic

State-based SHOSLIF for indoor visual navigation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shaoyun Chen ; KLA Tencor, San Jose, CA, USA ; Juyang Weng

In this paper, we investigate vision-based navigation using the self-organizing hierarchical optimal subspace learning and inference framework (SHOSLIF) that incorporates states and a visual attention mechanism. With states to keep the history information and regarding the incoming video input as an observation vector, the vision-based navigation is formulated as an observation-driven Markov model (ODMM). The ODMM can be realized through recursive partitioning regression. A stochastic recursive partition tree (SRPT), which maps a preprocessed current input raw image and the previous state into the current state and the next control signal, is used for efficient recursive partitioning regression. The SRPT learns incrementally: each learning sample is learned or rejected "on-the-fly." The proposed scheme has been successfully applied to indoor navigation.

Published in:

Neural Networks, IEEE Transactions on  (Volume:11 ,  Issue: 6 )