By Topic

High-power/high-brightness diode-pumped 1.9-/spl mu/m thulium and resonantly pumped 2.1-/spl mu/m holmium lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
P. A. Budni ; Sanders Associates Inc., Nashua, NH, USA ; M. L. Lemons ; J. R. Mosto ; E. P. Chicklis

We report high power (>36 W) with beam propagation factor M/sup 2//spl sim/2 in a diode end-pumped Tm:LiYF/sub 4/ (Tm:YLF) laser generating output near the 1.91-/spl mu/m region. Using the 1.91-/spl mu/m emission and high brightness achieved with the Tm:YLF laser we resonantly end-pump the Holmium /sup 5/I/sub 7/ manifold in Ho:YAG and demonstrate /spl sim/19 W of continuous-wave (CW) output. The diode-to-Holmium optical to-optical conversion efficiency achieved is /spl sim/18%. Using a CW pumped and repetitively Q-switched configuration, the Tm:YLF pumped Ho:YAG laser achieves >16 W of output power with an M/sup 2//spl sim/1.48 at 15 kHz. A Q-switched frequency range of 9 to >50 kHz is also achieved.

Published in:

IEEE Journal of Selected Topics in Quantum Electronics  (Volume:6 ,  Issue: 4 )