By Topic

Architecture-based performance analysis applied to a telecommunication system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
D. Petriu ; Dept. of Syst. & Comput. Eng., Carleton Univ., Ottawa, Ont., Canada ; C. Shousha ; A. Jalnapurkar

Software architecture plays an important role in determining software quality characteristics, such as maintainability, reliability, reusability, and performance. Performance effects of architectural decisions can be evaluated at an early stage by constructing and analyzing quantitative performance models, which capture the interactions between the main components of the system as well as the performance attributes of the components themselves. The paper proposes a systematic approach to building layered queueing network (LQN) performance models from a UML description of the high-level architecture of a system and more exactly from the architectural patterns used for the system. The performance model structure retains a clear relationship with the system architecture, which simplifies the task of converting performance analysis results into conclusions and recommendations related to the software architecture. The proposed approach is applied to a telecommunication product for which an LQN model is built and analyzed. The analysis shows how the performance bottleneck is moving from component to component (hardware or software) under different loads and configurations and exposes some weaknesses in the original software architecture, which prevent the system from using the available processing power at full capacity due to excessive serialization.

Published in:

IEEE Transactions on Software Engineering  (Volume:26 ,  Issue: 11 )