By Topic

Computing the distance between general convex objects in three-dimensional space

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
E. G. Gilbert ; Dept. of Aerosp. Eng., Michigan Univ., Ann Arbor, MI, USA ; C. -P. Foo

A methodology for computing the distance between objects in three-dimensional space is presented. The convex polytope is replaced by a general convex set, avoiding the errors caused by the usual polytope approximations and actually reducing the overall computational time. The basic algorithm is a simple extension of the polytope distance algorithm described by E.G. Gilbert et al. (1988). It utilizes the support mappings of the sets representing the objects. A calculus for evaluating these mappings that allows the extended algorithm to be applied to a rich family of nonpolytopal objects is presented. While the convergence of the algorithm is not finite, it is fast and an effective stopping condition that guarantees the accuracy of the numerical solution is available. Extensive numerical experiments support the claimed efficiency

Published in:

IEEE Transactions on Robotics and Automation  (Volume:6 ,  Issue: 1 )