By Topic

Dynamic surface control for a class of nonlinear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Swaroop, D. ; Dept. of Mech. Eng., Texas A&M Univ., College Station, TX, USA ; Hedrick, J.K. ; Yip, P.P. ; Gerdes, J.C.

A method is proposed for designing controllers with arbitrarily small tracking error for uncertain, mismatched nonlinear systems in the strict feedback form. This method is another "synthetic input technique," similar to backstepping and multiple surface control methods, but with an important addition, τ-1 low pass filters are included in the design where τ is the relative degree of the output to be controlled. It is shown that these low pass filters allow a design where the model is not differentiated, thus ending the complexity arising due to the "explosion of terms" that has made other methods difficult to implement in practice. The backstepping approach, while suffering from the problem of "explosion of terms" guarantees boundedness of tracking errors globally; however, the proposed approach, while being simpler to implement, can only guarantee boundedness of tracking error semiglobally, when the nonlinearities in the system are non-Lipschitz.

Published in:

Automatic Control, IEEE Transactions on  (Volume:45 ,  Issue: 10 )