By Topic

Adaptive stochastic approximation by the simultaneous perturbation method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Spall, J.C. ; Appl. Phys. Lab., Johns Hopkins Univ., Laurel, MD, USA

Stochastic approximation (SA) has long been applied for problems of minimizing loss functions or root finding with noisy input information. As with all stochastic search algorithms, there are adjustable algorithm coefficients that must be specified, and that can have a profound effect on algorithm performance. It is known that choosing these coefficients according to an SA analog of the deterministic Newton-Raphson algorithm provides an optimal or near-optimal form of the algorithm. However, directly determining the required Hessian matrix (or Jacobian matrix for root finding) to achieve this algorithm form has often been difficult or impossible in practice. The paper presents a general adaptive SA algorithm that is based on a simple method for estimating the Hessian matrix, while concurrently estimating the primary parameters of interest. The approach applies in both the gradient-free optimization (Kiefer-Wolfowitz) and root-finding/stochastic gradient-based (Robbins-Monro) settings, and is based on the "simultaneous perturbation (SP)" idea introduced previously. The algorithm requires only a small number of loss function or gradient measurements per iteration-independent of the problem dimension-to adaptively estimate the Hessian and parameters of primary interest. Aside from introducing the adaptive SP approach, the paper presents practical implementation guidance, asymptotic theory, and a nontrivial numerical evaluation. Also included is a discussion and numerical analysis comparing the adaptive SP approach with the iterate-averaging approach to accelerated SA.

Published in:

Automatic Control, IEEE Transactions on  (Volume:45 ,  Issue: 10 )