By Topic

A restructurable VLSI robotics vector processor architecture for real-time control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sadayappan, P. ; Dept. of Comput. & Inf. Sci., Ohio State Univ., Columbus, OH, USA ; Ling, Y.-L.C. ; Olson, K.W. ; Orin, D.E.

The authors propose a restructurable architecture based on a VLSI robotics vector processor (RVP) chip. It is specially tailored to exploit parallelism in the low-level matrix/vector operations characteristic of the kinematics and dynamics computations required for real-time control. The RVP is composed of three tightly synchronized 32-bit floating-point processors to provide adequate computational power. Besides adder and multiplier units in each processor, the RVP contains a triple register-file, dual shift network, and dual high-speed input/output (I/O) channels to satisfy the storage and data movement demands of the computations targeted. Efficiently synchronized multiple-RVP configurations, which may be viewed as variable very-long-instruction-word architectures, can be constructed and adapted to match the computational requirements of specific robotics computations. The use of the RVP is illustrated through a detailed example of the Jacobian computation, demonstrating good speedup over conventional microprocessors even with a single RVP. The RVP has been developed to be implementable on a single VLSI chip using 1.2-μm CMOS technology, so that a single-board multiple-RVP system can be targeted for use on a mobile robot

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:5 ,  Issue: 5 )