By Topic

Surface plasmon enhanced light-emitting diode

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vuckovic, J. ; Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA, USA ; Loncar, M. ; Scherer, Axel

A method for enhancing the emission properties of light-emitting diodes, by coupling to surface plasmons, is analyzed both theoretically and experimentally. The analyzed structure consists of a semiconductor emitter layer thinner than /spl lambda//2 sandwiched between two metal films. If a periodic pattern is defined in the top semitransparent metal layer by lithography, it is possible to efficiently couple out the light emitted from the semiconductor and to simultaneously enhance the spontaneous emission rate. For the analyzed designs, we theoretically estimate extraction efficiencies as high as 37% and Purcell factors of up to 4.5. We have experimentally measured photoluminescence intensities of up to 46 times higher in fabricated structures compared to unprocessed wafers. The increased light emission is due to an increase in the efficiency and an increase in the pumping intensity resulting from trapping of pump photons within the microcavity.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:36 ,  Issue: 10 )