By Topic

Neural networks and knowledge engineering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pao, Y.-H. ; Center for Autom. & Intelligent Syst. Res., Case Western Reserve Univ., Cleveland, OH, USA ; Sobajic, D.J.

A brief overview is given of the nature of present day artificial neural net computing and the authors emphasize the theme that in this mode of computing, knowledge is not represented symbolically, but in the form of distributed processing and localized decision rules. The authors propose that in neural-net computing, the processing is the representation. In other words, the very nature of the processing encodes the knowledge. There is no place and no need for a separate body of global rules to be used by the network for inferencing. If rules exist at all, they are in the nature of local processing steps carried out at individual processors in response to stimuli from other neurons. The authors develop this theme together with a theme which is closely related to it. The second notion is that neural networks may also be thought of and implemented in terms of heterogeneous networks, rather than always or only in terms of massive arrays of identical elemental processors

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:3 ,  Issue: 2 )