By Topic

Independent motion detection in 3D scenes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sawhney, H.S. ; Sarnoff Corp., Princeton, NJ, USA ; Yanlin Guo ; Kumar, Rakesh

This paper presents an algorithmic approach to the problem of detecting independently moving objects in 3D scenes that are viewed under camera motion. There are two fundamental constraints that can be exploited for the problem: 1) two/multiview camera motion constraint (for instance, the epipolar/trilinear constraint) and 2) shape constancy constraint. Previous approaches to the problem either use only partial constraints, or rely on dense correspondences or flow. We employ both the fundamental constraints in an algorithm that does not demand a priori availability of correspondences or flow. Our approach uses the plane-plus-parallax decomposition to enforce the two constraints. It is also demonstrated that for a class of scenes, called sparse 3D scenes in which genuine parallax and independent motions may be confounded, how the plane-plus-parallax decomposition allows progressive introduction, and verification of the fundamental constraints. Results of the algorithm on some difficult sparse 3D scenes are promising.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:22 ,  Issue: 10 )