By Topic

How bad may learning curves be?

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hanzhong Gu ; Kawasaki Steel Systems R&D, Japan ; H. Takahashi

In this paper, we motivate the need for estimating bounds on learning curves of average-case learning algorithms when they perform the worst on training samples. We then apply the method of reducing learning problems to hypothesis testing ones to investigate the learning curves of a so-called ill-disposed learning algorithm in terms of a system complexity, the Boolean interpolation dimension. Since the ill-disposed algorithm behaves worse than ordinal ones, and the Boolean interpolation dimension is generally bounded by the number of system weights, the results can apply to interpreting or to bounding the worst-case learning curve in real learning situations. This study leads to a new understanding of the worst-case generalization in real learning situations, which differs significantly from that in the uniform learnable setting via Vapnik-Chervonenkis (VC) dimension analysis. We illustrate the results with some numerical simulations.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:22 ,  Issue: 10 )