Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Geometric camera calibration using circular control points

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
1 Author(s)
Heikkila, J. ; Dept. of Electr. Eng., Oulu Univ., Finland

Modern CCD cameras are usually capable of a spatial accuracy greater than 1/50 of the pixel size. However, such accuracy is not easily attained due to various error sources that can affect the image formation process. Current calibration methods typically assume that the observations are unbiased, the only error is the zero-mean independent and identically distributed random noise in the observed image coordinates, and the camera model completely explains the mapping between the 3D coordinates and the image coordinates. In general, these conditions are not met, causing the calibration results to be less accurate than expected. In the paper, a calibration procedure for precise 3D computer vision applications is described. It introduces bias correction for circular control points and a nonrecursive method for reversing the distortion model. The accuracy analysis is presented and the error sources that can reduce the theoretical accuracy are discussed. The tests with synthetic images indicate improvements in the calibration results in limited error conditions. In real images, the suppression of external error sources becomes a prerequisite for successful calibration.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:22 ,  Issue: 10 )