By Topic

Computing global functions in asynchronous distributed systems with perfect failure detectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

A Global Data is a vector with one entry per process. Each entry must be filled with an appropriate value provided by the corresponding process. Several distributed computing problems amount to compute a function on a global data. This paper proposes a protocol to solve such problems in the context of asynchronous distributed systems where processes may fail by crashing. The main problem that has to be solved lies in computing the global data and in providing each noncrashed process with a copy of it, despite the possible crash of some processes. To be consistent, the global data must contain, at least, all the values provided by the processes that do not crash. This defines the Global Data Computation (GDC) problem. To solve this problem, processes execute a sequence of asynchronous rounds during which they construct, in a decentralized way, the value of the global data and eventually each process gets a copy of it. To cope with process crashes, the protocol uses a perfect failure detector. The proposed protocol has been designed to be time efficient: it allows early decision. Let t be the maximum number of processes that may crash, t

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:11 ,  Issue: 9 )