By Topic

An effective and comprehensive approach for traffic grooming and wavelength assignment in SONET/WDM rings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xijun Zhang ; Lucent Technol. InterNetworking Syst., Westford, MA, USA ; Chunming Qiao

In high-speed SONET rings with point-to-point WDM links, the cost of SONET add-drop multiplexers (S-ADMs) can be dominantly high. However, by grooming traffic (i.e., multiplexing lower-rate streams) appropriately and using wavelength ADMs (WADMs), the number of S-ADMs can be dramatically reduced. In this paper, we propose optimal or near-optimal algorithms for traffic grooming and wavelength assignment to reduce both the number of wavelengths and the number of S-ADMs. The algorithms proposed are generic in that they can be applied to both unidirectional and bidirectional rings having an arbitrary number of nodes under both uniform and nonuniform (i.e., arbitrary) traffic with an arbitrary grooming factor. Some lower bounds on the number of wavelengths and S-ADMs required for a given traffic pattern are derived, and used to determine the optimality of the proposed algorithms. Our study shows that using the proposed algorithms, these lower bounds can he closely approached in most cases or even achieved in some cases. In addition, even when using a minimum number of wavelengths, the savings in S-ADMs due to traffic grooming (and the use of WADMs) are significant, especially for large networks

Published in:

Networking, IEEE/ACM Transactions on  (Volume:8 ,  Issue: 5 )