By Topic

The capacities of optical CDMA communication channels with different code-correlation constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Shalaby, H.M.H. ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Inst., Singapore

A comparison between the performance of several optical code-division multiple-access (CDMA) correlation receivers is presented. The performance is measured in terms of an uncoded throughput capacity. It is defined as the maximum data rate (in nats/chip time) that can be achieved with arbitrary small error probability. Both on-off keying (OOK) and pulse-position modulation (PPM) CDMA schemes are considered. Signature code correlations bounded by either one or two are employed. Our results reveal that the throughput capacity of the optical PPM-CDMA systems can be increased by increasing the code-correlation constraint from one to two. That of OOK-CDMA systems, however, cannot be increased. Further, the throughput capacity of PPM-CDMA systems with code-correlation constraint of two is greater than that of OOK-CDMA systems with code-correlation constraint of one or two. In fact, this improvement in the throughput of PPM-CDMA systems over that of OOK-CDMA approaches a limiting factor of 10 as the pulse-position multiplicity increases to infinity

Published in:

Spread Spectrum Techniques and Applications, 2000 IEEE Sixth International Symposium on  (Volume:1 )

Date of Conference:

Sep 2000