Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Multitone sensor gain calibration in an uncertain underwater environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Avital, I. ; Tel Aviv Univ., Israel ; Tabrikian, J. ; Messer, H.

Array processing techniques for source detection and localization in an underwater acoustic environment are highly sensitive to both environmental modeling errors, such as sound propagation conditions, and sensor gain mismatch. Sonar arrays, which are normally rigorously calibrated before placement, may develop gain mismatch due to mechanical failures or local environmental variations, such as sediment build-up. In order to avoid performance degradation of detection and localization algorithms, a sensor gain calibration process can be carried out periodically. This paper proposes a maximum likelihood algorithm for sensor gain calibration in a shallow water environment. In the presence of environmental uncertainties, a robust algorithm is required, and such an algorithm is consequentially developed. The proposed method is based on the simultaneous estimation of the relative gains and the acoustic transfer function. To improve the accuracy of the sensor gain estimation, a-priori knowledge of the relationship between the sensor gains at different frequencies is exploited. The performance of the proposed calibration method is evaluated via simulations

Published in:

Sensor Array and Multichannel Signal Processing Workshop. 2000. Proceedings of the 2000 IEEE

Date of Conference:

2000