By Topic

Algebraic multigrid for complex symmetric systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
D. Lahaye ; Dept. of Comput. Sci., Katholieke Univ., Leuven, Belgium ; H. De Gersem ; S. Vandewalle ; K. Hameyer

The two dimensional quasistatic time-harmonic Maxwell formulations yield complex Helmholtz equations. Multigrid techniques are known to be efficient for solving the discretization of real valued diffusion equations. In this paper these multigrid techniques are extended to handle the complex equation. The implementation of geometric multigrid techniques can be cumbersome for practical engineering problems. Algebraic multigrid (AMG) techniques on the other hand automatically construct a hierarchy of coarser discretizations without user intervention given the matrix on the finest level. In the linear calculation of an induction motor the use of AMG as preconditioner for a Krylov subspace solver resulted in a six-fold reduction of the CPU time compared to an optimized incomplete LU factorization and in a twenty-fold reduction compared to symmetric successive overrelaxation

Published in:

IEEE Transactions on Magnetics  (Volume:36 ,  Issue: 4 )