By Topic

Solution strategies for transient, field-circuit coupled systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
De Gersem, H. ; ESAT, Katholieke Univ., Leuven, Heverlee, Belgium ; Mertens, R. ; Lahaye, D. ; Vandewalle, S.
more authors

Transient simulation time for field-circuit coupled models of realistic electromagnetic devices becomes unacceptably high. A magnetodynamic formulation is coupled to an electric circuit analysis, yielding a sparse, symmetric and indefinite matrix. The unknown circuit currents correspond to negative eigenvalues in the matrix spectrum. The Quasi-Minimal Residual method performs better than the Minimal Residual approach that is restricted to positive definite preconditioners. The positive definite variant is solved by the Conjugate Gradient method without explicitly building the dense coupled matrix. As an example, both approaches are applied to an induction motor

Published in:

Magnetics, IEEE Transactions on  (Volume:36 ,  Issue: 4 )