By Topic

Merging and splitting eigenspace models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hall, P. ; Sch. of Math. Sci., Bath Univ., UK ; Marshall, D. ; Martin, R.

We present new deterministic methods that, given two eigenspace models-each representing a set of n-dimensional observations-will: 1) merge the models to yield a representation of the union of the sets and 2) split one model from another to represent the difference between the sets. As this is done, we accurately keep track of the mean. Here, we give a theoretical derivation of the methods, empirical results relating to the efficiency and accuracy of the techniques, and three general applications, including the construction of Gaussian mixture models that are dynamically updateable

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:22 ,  Issue: 9 )