By Topic

Fast eigenspace decomposition of correlated images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chu-Yin Chang ; Semicond.. Technol. & Instrum. Inc., Plano, TX, USA ; Maciejewski, A.A. ; Balakrishnan, V.

We present a computationally efficient algorithm for the eigenspace decomposition of correlated images. Our approach is motivated by the fact that for a planar rotation of a two-dimensional (2-D) image, analytical expressions can be given for the eigendecomposition, based on the theory of circulant matrices. These analytical expressions turn out to be good first approximations of the eigendecomposition, even for three-dimensional (3-D) objects rotated about a single axis. In addition, the theory of circulant matrices yields good approximations to the eigendecomposition for images that result when objects are translated and scaled. We use these observations to automatically determine the dimension of the subspace required to represent an image with a guaranteed user-specified accuracy, as well as to quickly compute a basis for the subspace. Examples show that the algorithm performs very well on a number of test cases ranging from images of 3-D objects rotated about a single axis to arbitrary video sequences

Published in:

Image Processing, IEEE Transactions on  (Volume:9 ,  Issue: 11 )