By Topic

Nonlinear multiresolution signal decomposition schemes. II. Morphological wavelets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Heijmans, H.J.A.M. ; CWI, Amsterdam, Netherlands ; Goutsias, J.

For pt.I see ibid., vol.9, no.11, p.1862-76 (2000). In its original form, the wavelet transform is a linear tool. However, it has been increasingly recognized that nonlinear extensions are possible. A major impulse to the development of nonlinear wavelet transforms has been given by the introduction of the lifting scheme by Sweldens (1995, 1996, 1998). The aim of this paper, which is a sequel to a previous paper devoted exclusively to the pyramid transform, is to present an axiomatic framework encompassing most existing linear and nonlinear wavelet decompositions. Furthermore, it introduces some, thus far unknown, wavelets based on mathematical morphology, such as the morphological Haar wavelet, both in one and two dimensions. A general and flexible approach for the construction of nonlinear (morphological) wavelets is provided by the lifting scheme. This paper briefly discusses one example, the max-lifting scheme, which has the intriguing property that preserves local maxima in a signal over a range of scales, depending on how local or global these maxima are

Published in:

Image Processing, IEEE Transactions on  (Volume:9 ,  Issue: 11 )