Cart (Loading....) | Create Account
Close category search window

Semi-global stabilization with guaranteed regional performance of linear systems subject to actuator saturation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tingshu Hu ; Dept. of Electr. Eng., Virginia Univ., Charlottesville, VA, USA ; Zongli Lin ; Shamash, Yacov

For a linear system under a given saturated linear feedback, we propose feedback laws that achieve semi-global stabilization on the null controllable region while preserving the performance of the original feedback law in a fixed region. Here, by semi-global stabilization on the null controllable region we mean the design of feedback laws that result in a domain of attraction that includes any a priori given compact subset of the null controllable region. Our design guarantees that the region on which the original performance is preserved would not shrink as the domain of attraction is enlarged by appropriately adjusting the feedback laws. Both continuous-time and discrete-time systems are considered

Published in:

American Control Conference, 2000. Proceedings of the 2000  (Volume:6 )

Date of Conference:


Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.