By Topic

Model predictive control for max-plus-linear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
De Schutter, B. ; Control Lab., Delft Univ. of Technol., Netherlands ; van den Boom, T.

Model predictive control (MPC) is a very popular controller design method in the process industry. An important advantage of MPC is that it allows the inclusion of constraints on the inputs and outputs. Usually MPC uses linear discrete-time models. In this paper we extend MPC to a class of discrete event systems, i.e. we present an MPC framework for max-plus-linear systems. In general the resulting optimization problem is nonlinear and nonconvex. However, if the control objective and the constraints depend monotonically on the outputs of the system, the MPC problem can be recast as problem with a convex feasible set. If in addition the objective function is convex, this leads to a convex optimization problem, which can be solved very efficiently

Published in:

American Control Conference, 2000. Proceedings of the 2000  (Volume:6 )

Date of Conference: