By Topic

Low-power digital filtering using multiple voltage distribution and adaptive voltage scaling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. Dhar ; Dept. of Electr. & Comput. Eng., Colorado Univ., Boulder, CO, USA ; D. Maksimovic

This paper describes an adaptive power management architecture to reduce power consumption in digital filters. The proposed approach combines two low-power techniques which utilize supply voltage reduction. The first technique, multiple voltage distribution (MVD), attempts to reduce power consumption by assigning reduced supply voltages to circuit modules while satisfying timing constraints. The second technique, adaptive voltage scaling (AVS), dynamically adjusts these multiple voltages to meet throughput requirements resulting in further power reduction. An FIR filter application using the combined MVD-AVS power management scheme for two adaptively scaled supply voltages is shown to consume one-third the power of a fixed supply voltage scheme, and half the power consumed with a single supply AVS.

Published in:

Low Power Electronics and Design, 2000. ISLPED '00. Proceedings of the 2000 International Symposium on

Date of Conference:

26-27 July 2000