By Topic

An optically linked electric and magnetic field sensor for Poynting vector measurements in the near fields of radiating sources

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Driver, L.D. ; NBS, Boulder, CO, USA ; Kanda, M.

A unique, single-element antenna measurement scheme that can simultaneously measure the electric, magnetic, and time-dependent Poynting vectors of electromagnetic (EM) fields is described. The electric and magnetic responses of the antenna sensor are separated by a O°/180° hybrid junction. The resulting two RF voltages, along with relative phase and frequency information, are transmitted to a remotely located vector analyzer by a pair of well-matched fiber optic downlinks. The remote receiver measures and displays the electric dipole response, the magnetic loop response, and the time phase difference between the two. This information is sufficient to determine the time-dependent Poynting vector. Both a theoretical analysis and a discussion of experimental measurements performed, which describe the capabilities and performance of a working prototype of the antenna measurement scheme, are presented. The results demonstrate that a three-axis (isotropic) version of this system could be used to measure the near fields of EM sources, as well as to completely describe the resultant flow of energy

Published in:

Electromagnetic Compatibility, IEEE Transactions on  (Volume:30 ,  Issue: 4 )