By Topic

Trajectory control of robotic manipulators using neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ozaki, T. ; Dept. of Electron. Mech. Eng., Nagoya Univ., Japan ; Suzuki, T. ; Furuhashi, T. ; Okuma, S.
more authors

The authors present a nonlinear compensator using neural networks for trajectory control of robotic manipulators. The neural networks are not used to learn inverse-dynamics but to compensate nonlinearities of robotic manipulators. The performance of the proposed neural network controller is compared with that of the adaptive controller proposed by J.J. Craig (1988), and the effectiveness of the proposed neural network controller in compensating the unstructured uncertainties is clarified. A learning scheme using a model of known dynamics of manipulators is also proposed. The model learning can be done offline and needs no data recording of actual manipulator operation

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:38 ,  Issue: 3 )